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1. STATEMENT OF THE PROBLEM STUDIED 
 
Gaining a detailed tactical picture of the modern battle-space is vital to the success of any 
military operation.  This picture is used to direct the movement of assets and material 
over rugged terrain during day and night, in uncertain weather conditions, taking account 
of possible enemy locations and activity.  To provide a timely and accurate picture of the 
battlespace, most modern command operations centers (COC) have access to a multitude 
of systems which provide information from many different sources including eye witness 
reports, aerial photographs, sonar, radar, synthetic aperture radar (SAR), multi-spectral 
imaging (MSI), hyper spectral imaging (HSI), foliage penetration radar (FOPEN), 
electro-optic (EO), infrared (IR) and moving target imaging (MTI) data.  These disparate 
and sometimes conflicting sources must be combined together to present the tactical 
view. However, the quantities of information are sufficiently large that it is impossible 
for an individual to be able to collect and comprehend all the information.  Typically, 
each information source is analyzed individually by a specially trained technician.   Even 
then, fusing these disparate data sources is difficult.  The goal is to provide an overall 
view of the battle-space that is clear, concise, coherent, complete and accurate.  However, 
the effectiveness of such a view is determined by its usability.   If the picture contained 
all the information that had been collected, the commanders would be overloaded by the 
quantity of information. 
 
Historically, most tactical decision makings were performed on a sand table, i.e. a box 
filled with sand shaped to replicate the battlespace terrain.  Commanders moved around 
small physical replicas of battlefield objects to visualize battlefield situations.  Currently, 
these same operations are carried out using detailed paper maps and acetate overlays.  
These maps and overlays can take several hours to print, distribute and update. To speed 
up the visualization process, the joint Maritime Command Information System (JMCIS), 
a widely fielded military information system including a visualization module was 
developed. Although JMCIS is extremely powerful and flexible, it has two significant 
problems for battlefield visualization: clutter and the loss of three dimensional 
information.  Visualization difficulties can be reduced by replacing the two dimensional 
plan view by a three dimensional display, as is done in the virtual environment for 
battlefield visualization called Dragon that is implemented on a Responsive Workbench 
at Naval Research Labs. Essentially, the Workbench is an electronic 3D sand table.  
Applications in which several users collaborate around a workspace such as a table are 
excellent candidates for the workbench; however, the Workbench imagery is only correct 
for one or two observers, whose 3D viewpoints are correctly tracked. Other non-tracked 
users can observe the scene as well, but their perception is distorted. 
 
While the Dragon system presents a leap forward as compared to sand tables, maps and 
overlays and two dimensional visualization systems, it can be improved in several ways: 
First and foremost, the workbench is most useful in applications where several users 
collaborate around a workspace, such as a table. As such it is not suitable for the mobile 
soldier, or pilot, or other military personnel that cannot possibly carry a workbench and 
are thus limited to lightweight Personal Digital Assistants (PDA) or Head Mounted 
Displays (HMD) for 3D display purposes. For example, mobile PDA or HMD displays 
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can provide useful information from both a user's (first-person) perspective or an aerial 
perspective: different presentation issues relate to these two views of the same 
information. 
 
Second, the workbench can be enhanced with augmented reality techniques whereby 
actual imagery and video from the battlespace can be registered with computer generated 
terrain data stored in geospatial databases and displayed as the virtual environments.  In a 
mobile scenario, this can help the mobile individuals identify where they are located, and 
visualize where they are heading.  For instance, a soldier in a battlefield might use the 
system to find out what lies beyond the large hill he sees in front of him. In addition to 
providing valuable navigation information to the mobile military personnel, the captured 
imagery/video from individual soldiers in the field can be used to update the centralized 
or decentralized visualization databases. An important question to answer in this context 
is the extent to which mobile users need to update their visualization databases based on 
each other's visual imagery. Generating and updating visualization databases using 
synthetic data such as maps and elevation data, or real data such as images and video, in 
an automatic, yet accurate and fast way is an important element of our research agenda. 
 
Third, a battlefield necessarily deals with uncertainty, and it is necessary to determine 
ways to represent and encode the confidence level that exists for each piece of battlefield 
data. For example, as the last reported position of an entity ages, the uncertainty of where 
the entity is currently located grows. In a broader sense, uncertainty can either result from 
sensor errors or processing algorithms such as image understanding and analysis and 
target recognition algorithms.  An important challenge is to present the level of 
uncertainty associated with each object in the virtual scene in a visually intuitive way 
without cluttering or resulting in information overload.  Uncertainty can also be used to 
prioritize the information that needs to be presented to the users. 
 
Fourth, time must also become a part of battlefield visualization system.  This might be 
used to play back the previous 24 hours or to store and review the plans for the upcoming 
24 hours.  This necessitates the generation of 4D models, three determining space and the 
fourth dimension giving time.  Fast, accurate and automatic model generation based on 
synthetic data such as maps and elevation data as well as real imagery is an important 
research topic. 
 
Fifth, distributed computing is the direction in which all military systems are moving. 
This includes remote person-to-person collaboration as well as distributing the computing 
across multiple platforms.  
 
Based on the above requirements, we have investigated a distributed, database system for 
battlefield visualization, tailored to the needs of future mobile military personnel.  This 
database incorporates and presents uncertainty associated with objects in the virtual 
scene, is four dimensional, and is initially constructed by registering sensor imagery to 
ground control points and reference imagery, with the additional input of maps and 
elevation data. The resulting 4-D model provides the scene context for interaction, 
interpretation, and the visualization needs of the users. The users not only extract and 
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visualize information from this system, but also contribute to updating it. In doing so, 4D 
model updates are placed into special geo-referenced data structure necessary for real 
time visual navigation of very large data collections; time is be treated on the same 
footing as spatial dimensions so that one can navigate through time as well as space or 
jump from time to time for accurately geo-located data. 
 
In what follows, we provide highlights of our research results for this MURI project; 
these include (a) automatic 3D modeling of urban environments (b) real time sensor data 
fusion with 3D models and visualization (c) mobile augmented battlefield visualization 
(d) quantifying and visualizing uncertainty (d) decision making with uncertain image and 
sensor data. In what follows we elaborate on each one of these in detail. 
 
2. SUMMARY OF THE MOST IMPORTANT RESULTS 
 
2.1 Results in 3D Modeling 
 
2.1.1 Automated 3D City Modeling  
 
Many current and future military operations are likely to take place in cities, requiring the 
U.S. military to be prepared to engage in operations in urban areas. As such, a major key 
to success in such missions is the ability to model real-world urban areas accurately and 
effectively, so as to support US military mission planning, operations, and training. This 
requires urban terrain mapping, interrogation, and visualization capabilities, together with 
frequent update processing. In addition to military applications, three dimensional urban 
models are used in civilian applications such as urban planning, virtual reality, gaming 
and entertainment industries, and simulation of the propagation of radio waves for the 
cell phone industry.  
 
Acquisition of 3D city models has traditionally been difficult and time consuming. As 
such, large scale models typically take months to create, and usually require significant 
manual intervention [ChaShe98]. This process is not only prohibitively expensive, but 
also is unsuitable in applications where a 3D snapshot of a city is needed within a short 
time, e.g. for disaster management or for monitoring changes over time.   
 
There exist a variety of approaches to creating 3D models of cities from an airborne view 
via remote sensing. One approach is to use aerial images in stereo vision algorithms 
[Frere98]. In recent years, advances in resolution and accuracy of airborne laser scanners 
have also rendered them suitable for the generation of 3D models 
[Brenner2001,Maas2001]. Although these methods can be reasonably fast, the resulting 
resolution of the models is not high, and without manual intervention, the resulting 
accuracy is also poor. Specifically, they lack the level of detail that is required for 
realistic virtual walk-throughs or drive-throughs needed in military applications.    
 
Previous work on acquiring detailed building models from a ground-level view has been 
limited to one or few buildings: Debevec et al. proposes to reconstruct a building based 
on few camera images in a semi-automated way [debevec]. Stamos and Allen use a 3D 
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laser scanner [stamos], and Thrun et al. [thrun] and Hahnel et al. [hahnel] use 2D laser 
scanners mounted on a mobile robot to achieve complete automation, but the time 
required for data acquisition of an entire city is prohibitively large; Antone and Teller 
[antone] propose an approach based on high-resolution half-spherical images, but data 
has to be acquired in a stop-and-go fashion.  
 
Over the past 6 years, under this MURI program, the Berkeley team has developed data 
acquisition and processing techniques for fast, automated, photorealistic, 3D modeling of 
urban terrain that can be used for virtual walk-throughs, drive-throughs, and  fly-throughs 
[AZ1,AZ2,AZ3,AZ4,AZ5,AZ6,AZ7,AZ8,AZ9,AZ10,AZ11,AZ12,AZ13].  Our approach 
uses laser and camera data both at the ground and aerial level, and consists of several 
steps: (a) accurate localization of the ground acquisition vehicle; (b) processing of the 
ground based laser and camera imagery in order to arrive at accurate 3D models of the 
facades of buildings; (c) acquisition and processing of airborne laser and camera imagery 
in order to arrive at accurate 3D models of rooftops; (d) registration of the data from 
ground and aerial data with respect to each other; (e) merging of the ground and aerial 
models in order to arrive at a complete model of an urban environments; the flow 
diagram for our overall modeling approach is shown in Figure 1. 
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Figure 1: Data flow diagram of our modeling approach. Airborne modeling steps are 
highlighted in green, ground-based modeling steps in yellow, and model fusion steps in 
white. 
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Our ground based data acquisition system consisted of two fast, inexpensive 2D laser 
scanners, one horizontal, and one vertical, and a digital camera. This data acquisition 
system is mounted on a truck moving at a normal speed on public roads, collecting data 
to be processed offline. This approach has the advantage that data can be acquired 
continuously, rather than in a stop-and-go fashion, and is therefore much faster than 
existing methods based on 3D scanners.  The basic idea is to stack the vertical laser scans 
acquired over time next to each other at proper positions in order to arrive at a faithful 
reconstruction of the building facades. As such, it is necessary to determine the pose of 
successive laser scans and camera images in a global coordinate system with centimeter 
and sub-degree accuracy.  We have accomplished this by computing relative position 
changes via matching successive horizontal laser scans against each other [AZ2]. 
Furthermore, we have developed a novel particle filtering based method to correct 
accumulating pose uncertainty by using airborne data such as aerial photo or a digital 
surface model (DSM) as a reference [AZ13]. An inherent advantage of this approach is 
that it automatically registers ground level laser scans and camera images with airborne 
data, facilitating subsequent fusion of the aerial and ground models in later steps [AZ3].    
 
Once the ground based vehicle is accurately localized, it is possible to stack successive 
vertical laser scans to construct a structured point cloud of the facades of the buildings. 
As there are many erroneous scan points, e.g. due to glass surfaces and foreground 
objects partially occluding the desired buildings, the generation of a facade mesh is not 
straightforward. Specifically, a simple triangulation of the raw scan points by connecting 
neighboring points whose distance is below a threshold value does not result in an 
acceptable reconstruction of the street scenery. In [AZ1], we have developed a class of 
data processing algorithms to create visually appealing facade models from the ground 
based data by first converting our triangulated 3D model into a 2.5 dimensional depth 
map, and  introducing  a representation based on multiple depth layers of the  street 
scenery. Each depth layer is a scan grid, and the scan points of the original grid are 
assigned to exactly one of the layers. If at a certain grid location there is a point in a 
foreground layer, this location is empty in all layers behind it, and needs to be filled in. In 
practice, we have found it to be sufficient to generate only two layers, namely a 
foreground and a background layer. We then apply depth based histogram analysis to 
separate foreground objects such as trees, cars, pedestrians, telephone poses, from those 
of the background, i.e. building facades. Subsequently, erroneous scan points in the 
background layer are detected and removed, the occluding foreground layer is segmented 
into objects, and occlusion holes resulting from such objects are filled using a RANSAC 
based plane fitting algorithm  [AZ1].  
 
In [AZ3], we develop a series of processing steps for airborne laser data consisting of (a) 
re-sampling and interpolation of the raw laser data; (b) segmentation of the rooftops 
based on depth discontinuity; (c) removing small segments such as ventilation ducts; (d) 
hole filling by extrapolation of nearby planar segments; (e) finding polygonal 
approximation for segment perimeter based on RANSAC, and (f) straightening of the 
edges; Figures 2(a) and 2(b) show the triangulation of the airborne Berkeley data and its 
postprocessed version respectively. As seen, the above processing steps result in a 

5



dramatic improvement in the visual quality of the model. Figure 2(c) shows the texture 
mapped version of the processed DSM via airborne top down imagery.   
 
 
 
 
 
 
 
 
 

 
                                       (a) 

  
                                      (b) 

 
                                          (c) 
Figure 2: Airborne model. (a) DSM directly triangulated, (b) triangulated after 
postprocessing, (c) model texture-mapped. 
 
Once the airborne and ground based models have been generated, they need to be 
combined to generate a complete model. Since the two models have been registered with 
respect to each other in the ground vehicle localization step described earlier, no further 
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registration is needed. However, merging of the two models is still a particularly 
challenging task since the resolutions of the two models are vastly different, with the 
resolution of the facade model being about 10 centimeters, and that of the airborne model 
around half a meter. To enable interactive rendering, the two models need to fit together 
even if their parts are at different levels of detail or resolutions. To address this problem, 
we have developed a “blend mesh” approach to fill in the gaps that inevitably exist 
between the two models [AZ3].  An example of walk-through and fly through views of 
the model for a portion of University Avenue in downtown Berkeley as seen from the 
ground level is shown in Figure 3. As seen, the model is quite photo-realistic, and can be 
used for virtual navigation through streets of Berkeley in walk/drive/fly-through modes.     
 
 

 
Figure 3: Examples of Walkthrough and Fly-through for downtown Berkeley 
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Resulting 3D models of downtown Berkeley can be downloaded from: 
 
http://www-video.eecs.berkeley.edu/~frueh/3d/index.html
 
In addition, a Quicktime video of interactive walk/drive/fly through for downtown 
Berkeley can be downloaded from: 
 
http://www-video.eecs.berkeley.edu/~avz/down11.mov
 
In the past two years, we have further extended our basic modeling approach in several 
directions: 
 
2.1.2 Extension to suburban and residential areas with trees 
 
We have developed an approach to detecting trees in registered aerial image and range 
data obtained via LiDAR [AZ12,AZ13]. Representing the trees in 3D models is 
problematic because the data are usually too sparsely sampled in tree regions to create an 
accurate 3-D model of the trees. Furthermore, including the tree data points interferes 
with the polygonization step of the building roof top models. Therefore, it is 
advantageous to detect and remove points that represent trees in both LiDAR and aerial 
imagery. We have developed a two-step method for tree detection consisting of 
segmentation followed by classification. The segmentation is done using a simple region 
growing algorithm using weighted features from aerial image and LiDAR, such as height, 
texture map, height variation, and normal vector estimates. The weights for the features 
are determined using a learning method on random walks. The classification is done 
using weighted support vector machines (SVM), allowing us to control the 
misclassification rate. The overall problem is formulated as a binary detection problem, 
and the results presented as receiver operating characteristic curves are shown to validate 
our approach. As shown in Figure 4, this method is capable of segmenting and classifying 
trees in urban environments.  
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Figure 4: Example of segmentation of UC Berkeley campus data; green denotes correctly 
classified trees; pink shows non-trees incorrectly classified as trees; blue denotes trees 
incorrectly classified as non-trees.  
 
 
 
2.1.3 Semi-Automatic Modeling of Cities 
 
The USC team has developed a complete modeling system that can extract and refine 
complex building structures with irregular shapes and surfaces in a semi-automated way.  
The global building footprints and roof data provided by the LiDAR reconstruction is 
used to determine the geo-locations of buildings and isolate them from surrounding 
terrain.  Based on the shape of a building roof (flat-roof, slope-roof, dome-roof, gable-
roof, etc.), we divide a complex building into several basic building primitives (including 
the standard CG primitives such as plane, cube, wedge, polyhedron, cylinder and sphere, 
and high-order surface primitives such as superquadrics) and model them using a 
parametric representation.  As the models from constructive solid geometry allow the 
composition of complex models from basic primitives that are represented as parametric 
models, our approach is quite general.  Also, as the type of primitive is not limited, may 
contain objects with curved surfaces, so the flexibility of model combinations is very 
high, hence we can model a range of complex buildings with irregular shapes and 
surfaces by combining appropriate geometry primitives and fitting strategies. 

This system is semi-automatic in that it requires user interaction to select the building 
section and associated group type.  Once the user input is provided, the system 
automatically performs the processing including boundary segmentation, primitive 
fitting, model refinement, and optimization to complete the building model.  Our system 
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also provides a range of editing tools, allowing users to further refine the models or 
obtain a specific representation quickly.  The system has been tested using a range of 
different building structures.  Figure shows the result of modeling entire USC campus 
and surrounding University Park area including the Coliseum, LA Arena, museums, and 
gardens. 
 

  

Figure 5 : Complete refined models of USC campus and surrounding University Park 
area (left).  An aerial photograph is projected on the models heightening the realism of 
models (right).  The model was created in two days using the developed system 

 
2.2 Results on 4D capture and Modeling 
 
2.2.1 Augmented Virtual Environment (AVE) 
 
Dynamic scene analysis and object extraction are traditional problems in computer 
vision. We have introduced the concept of Augmented Virtual Environment (AVE) as the 
framework for incorporating our proposed model/image/video/data fusion techniques and 
algorithms. The AVE is a novel and comprehensive approach to data fusion, analysis, and 
visualization that incorporates and presents all the sensors, abstract data, objects, and 
scenes models within a common context to produce a concise, coherent, and non-
conflicting representation for time-space interpretation of real world activity.  The AVE 
framework is particularly suited to addressing the difficult problem posed by multiple 
video sources.  In an AVE system, image sensors are modeled as “virtual projectors” 
(VPs) that have the same imaging parameters as the sensors.  
 
The overall approach is the fusion of video streams in the context of 3D models.  In order 
to achieve that, several problems had to be addressed including: rapid 3D modeling of the 
site in order to provide the context for video fusion; efficient encoding/decoding and 
transfer of video into the host computer; real-time texture projection onto 3D models; and 
texture management for scalable performance to 100’s of cameras. Sub-barriers within 
the problem of rapid and accurate modeling of terrain and structures include data fusion 
and integration of multiple data sources (images and LiDAR) as well as integrated 
automated tools for rapid processing of data. 
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Our research activities resulted in the development of methods and algorithms for 
scalable video acquisition and texture management.  These new algorithms are now a part 
of the AVE system, automatically managing the compression quality, video frame rate, 
and video image size of each video stream so that a workload ceiling on the AVE system 
is never exceeded.  A limit on the system workload means that real-time rendering and 
interaction with the user is maintained for an arbitrarily high number of camera video 
streams.   
 
Encoding/decoding of video Initial efforts to move video into a computer and apply it as 
a dynamic texture proved to be cumbersome and slow.  The movement of large volumes 
of data exceeded the limits of computer systems.  By careful testing, and engineering, we 
leveraged the available high performance subsystems in current computers and graphics 
cards, as well as the emerging commercial trend for video-over-IP products.  
Multithreading and multiple CPU or CPU Core systems allow for efficient utilization and 
parallel decoding of video.  High bandwidth networks (Gigabit Ethernet) provide 
commercial solutions to video routing.  Optimized JPEG and MPEG software decoders 
provide high performance decoding of multiple video streams. 
 
Real-time texture projection onto 3D models Once decoded video is available in a host 
computer, its projection onto a 3D model requires high bandwidth data transfer and high 
throughput graphics rendering with textures.  We optimize our algorithms to make the 
most of the high-performance AGP and PCIE bandwidth to graphics cards and their high 
rendering performance.  We developed visibility culling and multiscale texturing 
algorithms to maintain high throughput under all viewing conditions.  We developed 
parallel shader GPU programs to accelerate the texture projection processing.  
 
Texture management for scalable performance to 100’s of cameras We developed 
methods and algorithms for scalable video acquisition and texture management.  These 
algorithms automatically manage the compression quality, video frame rate, and video 
image size of each video stream so that a workload ceiling on the AVE system is never 
exceeded.  A limit on the system workload means that real-time rendering and interaction 
with the user is maintained for an arbitrarily high number of camera video streams.   
 

2.2.2 Dynamic Scene Capturing System 
 
The UC Berkeley team has started to investigate a new approach for capturing dynamic 
scenes such as a basketball game or soldiers fighting. Our goal is to acquire both 3D 
geometry and visual appearance of a scene over time, and thus essentially record a 4D 
movie which could be viewed afterwards from any arbitrary position. Our approach 
utilizes a video camera, an infrared (IR) camera, a pattern of vertical IR light stripes, and 
a 2D IR line laser with a rotating mirror in a setup as shown in Figure 6Figure(a). We 
use structured IR light in order to avoid interfering with or disturbing the moving persons 
or objects.   
 
An invisible static line pattern of equally spaced vertical lines is projected onto the scene 
with the IR line projector, and this line pattern is recorded from a different position at 15 
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Hz frame rate with the infrared camera. Due to the different viewpoint, the projected lines 
are curved in the images according to the shape of the objects, and we track each of them 
and obtain a set of curved lines. If we manage to identify the IR light plane equation for 
each curved line in the IR image, we can reconstruct the depth of the objects along the 
lines based on triangulation. However, identifying the corresponding IR light plane is a 
non-trivial problem; in previous work, solutions such as line coding or time multiplexing 
have been proposed, which are not applicable for IR systems and dynamic scenes, 
respectively. In our approach, we attempt to solve this identification problem via a 
horizontal IR line laser.  
 
Using a rotating mirror, we sweep the IR laser line vertically over the scene at a low 
frame rate, e.g. 1Hz. Since this is the only horizontal IR line in the image, it is easy to 
identify. Knowing the angle of the rotating mirror, we can compute the depth accurately 
along this line. For the vertical lines which intersect with this laser line, we can compute 
the IR light plane equation by using the 3D coordinates of the intersection point, the 
center-of-projection of the IR light projector, and the verticality of the light planes (intra-
frame line tracking). For vertical lines that do not intersect with the horizontal line, we 
determine vertical lines in the previous frame which were close, and utilize their plane 
equation; this is possible because the motion between 2 frames, i.e. within 66 ms, is 
limited. Since the horizontal line sweeps continuously across the scene, the plane 
equation for every line segment is identified at some point; by tracking lines across the 
frames (inter-frame line tracking), we can pass on the plane equation from one frame to 
the next one.   
 
Our results on this work are preliminary but promising.  Figure 6(b) shows a frame from 
the IR video of our acquisition system, and  Figure 6(c) the reconstructed depth of the 
moving object. 
 

rotating 
mirror

2D IR line laser

IR camera

vertical IR line 
projector

   
Figure 6: Dynamic scene capturing: (a) setup, (b) IR camera view with projected vertical 
stripes and the horizontal laser line, (c) reconstructed depth. 

 
A video of interactive rendering of a time varying human object in a room can be 
downloaded from: 
 
http://www-video.eecs.berkeley.edu/~avz/NewDynSceneMovie.avi  
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2.3. Results on Mobile Situational Visualization   
 
Accomplishments of this MURI program on mobile situational visualization include:  
 
• Development of a testbed for mobile augmented battlefield visualization. 
• Creation, development, and evaluation of “mobile situational visualization”. 

o Development of a mobile prototype including a command center, server 
architecture, and connected, collaborating mobile participants with GPS, 
orientation tracking, and shared annotations. 

o Testing and evaluation of the mobile environment with tracking scenarios to 
show capabilities and effectiveness. 

• In conjunction with Syracuse University, added dynamic decision support to mobile 
situational visualization so that paths could be chosen under the placement of moving, 
changing risks. Paths were chosen in a trade-off of lowered risk versus shorter 
distance. 

• Developed new simplification methods for detailed 3D building models so that they 
could be rendered quickly with appropriate appearance characteristics. 

o Punctuated simplification method for producing significant, even extreme, 
simplifications of manmade models while preserving shape. 

o Appearance-preserving level of detail method for producing continuous LOD 
simplifications that applies an error metric to both geometry and appearance 
(e.g., textures). 

• Created a novel approach that uses the principals of urban legibility to determine 
levels of abstraction for completely free navigation of massive urban models (with 
hundreds of thousands of buildings). With this approach skylines and neighborhoods 
are simplified in such a way that the overall structure of the city remains legible and 
understandable while close-up details are retained. 

• Developed methods to automatically generate dense urban models. A variety of 
sources including insurance databases, LIDAR scans, topographic data, and existing 
models are combined automatically. The resulting urban model has both generic and 
specific structures; the former have accurate footprints, orientation, locations, and 
heights. Generic roof and façade textures are automatically generated. Using these 
methods, we generated extensive urban models for both Atlanta and Charlotte. The 
latter model has in excess of 370,000 buildings. 

• Development of new methods to automatically extract tree and shrub footprints from 
ortho-rectified color aerial images. Tree and shrub models can then be generated from 
these with heights generate either procedurally from an analysis of the tree width or 
directly from LIDAR data. 

• Development of new multimodal interfaces for mobile situational visualization. 
Interfaces include gesture tracking using a chest pendant with camera, hand 
orientation tracking, and tablet-based sketch input. 

• Presented  mobile situational visualization and its relation to homeland security at 
invited talks at a special session of the AAAS meeting on the National Visualization 
and Analytics Center (February, 2005), at AppliedVis 2005 (May, 2005), and at an 
invited presentation for the DHS Regional Visualization and Analytics Centers 
(January, 2006). 
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• Using work in urban terrain analysis begun under this MURI as a foundation, began 
work on a project sponsored by ARO for eye-point dependent models applied to 
terrain analysis and applications such as line-of-sight. 

• Based on discussions with the program manager at DARPA IXO, we were 
encouraged to submit a proposal on mobile situational visualization (in conjunction 
with Syracuse University). Although the proposal was not funded, we are continuing 
to explore these possibilities with DARPA. 

• We presented our mobile system and visualization capabilities to many individuals in 
state and national government and also to the military. The system was also a key 
presentation during the Georgia Tech Homeland Defense Workshop. The system is 
being used as part of the Sarnoff Raptor system, which is deployed to the Army and 
other military entities. In addition our visualization system is being used as part of the 
Raptor system at Scott Air Force Base. 

• VGIS, which is the foundation for our mobile visualization system, was licensed by 
Sarnoff Corp. It is being used in a system that provides an integrated picture of 
aircraft operations and ground movements. 

• Our system was presented as part of a mobile emergency response application to 
President Bush and Governor Tom Ridge, at that time head of DHS. The presentation 
was part of an extensive exercise for emergency response in an urban setting to a 
terrorist attack, in this case the release of sarin gas inside and outside a large building 
in the city. 

• Situational visualization and mobile battlefield applications were presented to Paul 
Dumanoir and Pamela Woodard, program directors at STRICOM in Orlando. 

• Our systems have been used in a variety of exercises in support of the Marines (in 
collaboration with NRL)—we have done some work in developing full 3D model, 
trees, etc. Displayed results on laptop with GIS positioning. Integrated mesoscale 
weather simulation (MM5). 

 
 
2.4 Results on Decision Making with Uncertainty 
 
This research thrust addressed the development of methodologies for handling 
uncertainty in space and time-conscious battlefield scenarios.  Analyses and algorithms 
were developed to address dynamically changing environments to assist detection, 
tracking and visualization tasks.  The highlights of this work are summarized below. 
 
2.4.1 Temporal Uncertainty Reasoning:  
 
We developed an approach based on Bayesian networks for time-sensitive belief 
propagation in the context of dynamically changing environments, where the relevance of 
observations decays with time.  A compact and efficient continuous-time representation 
is used, unlike the dominant “time-slice” approach predominant in the literature. 
Conditional probabilities associated with edges in the networks depend on time in two 
ways: the exact timestamp associated with individual nodes in the network, and the time 
delays between observations and other hypotheses associated with nodes.  The network 
propagation model has been implemented along with a visualized battlefield tracking 
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application where uncertain observations of tracked entities are made using multiple 
sensors. 
 
2.4.2 Decision Fusion in a Large WSN:   
 
For a wireless sensor network (WSN) deployed in the battlefield with a random number 
of sensors, we have proposed a decision fusion rule that uses the total number of 
detections reported by local sensors as a statistic for hypothesis testing. We assume that 
the signal power attenuates as a function of the distance from the target, the number of 
sensors follows a Poisson distribution, and the locations of sensors follow a uniform 
distribution within the region of interest (ROI). Both analytical and simulation results for 
system-level detection performance have been provided. This fusion rule can achieve a 
very good system-level detection performance even at very low signal to noise ratio 
(SNR), as long as the average number of sensors is sufficiently large. For all the different 
system parameters we have explored, the proposed fusion rule is equivalent to the 
optimal fusion rule, which requires much more prior information. The problem of 
designing an optimum local sensor-level threshold has been investigated. For various 
system parameters, the optimal thresholds have been found numerically by maximizing 
the deflection coefficient. Guidelines on selecting the optimal local sensor-level threshold 
have also been provided. 
 
2.4.3 Fusion of Decisions Corrupted by Fading Channels:  
 
We have investigated the decision fusion problem for decisions transmitted over noisy 
and fading wireless channels. In a conventional distributed detection system, it is often 
assumed that the decisions sent from local sensors are perfectly recovered at the fusion 
center. However, because of the harsh and hostile battlefield environment, the power of 
transmitted signal should be kept to a minimum to attain a low probability of 
intercept/detection (LPI/LPD). As a result, for a WSN deployed in a battlefield, the 
transmitted information has to endure both channel fading and noise/interference, since 
error protection via channel coding and increased transmitter power may not be desirable 
due to limited resources. We have developed a decision fusion rule that intelligently deals 
with channel fading, and that provides robust detection performance in the presence of 
channel noise and channel fading. 
 
2.4.4 Temporal Staggering for Target Tracking:  
 
Several practical battlefield target tracking scenarios require the periodic collection of 
uncertain information from multiple sensors, with different measurement noise variances.  
Decisions need to be made regarding the optimal strategies for collecting data over time 
from different sensors.  We have studied the effects of temporally staggered sensors on 
system performance, and evaluated them by comparison to synchronous sensors.  
Optimal staggering patterns have been found numerically in some simulations.  Practical 
guidelines on selecting optimal staggering patterns have been obtained for different target 
tracking scenarios.  
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2.4.5 Distributed Sequential Detection:  
 
We have considered the problem of distributed sequential detection in the presence of 
communication constraints for a sensor network. The observations available at each 
sensor are first compressed to multi-bit sensor decisions and sent to the fusion center. At 
the fusion center, a sequential data fusion scheme is implemented in order to reach a 
global decision. An algorithm has been developed for optimal bandwidth distribution 
among sensors under a fixed bandwidth constraint. Under symmetry and conditional 
independence assumptions, the algorithm can be simplified substantially: the cooperative 
quantizer design algorithm reduces to independent quantizer design. The case when 
communication bandwidth is the only constraint has also been considered. 
 
2.4.6 Activity Change Recognition:  
 
Visualization in dynamic battlefield environments, using information from multiple 
sensors observing multiple locations, necessitates automatically focusing attention on the 
regions of interest where important changes have occurred in the activities of individuals 
being monitored.  We have addressed this problem, developing a new Control Charts 
approach for activity change recognition using human activity data from video image 
sequences. 
 
2.4.7 Heterogeneous Sensor Data Fusion:  
 
In battlefield surveillance-related applications, asynchronously arriving data from 
heterogeneous sensors needs to be combined effectively in order to draw some inferences 
that cannot be drawn from individual data streams by themselves.  This problem is 
particularly difficult when the data streams are incommensurate and substantially 
different.  We have addressed this problem by developing a heterogeneous sensor fusion 
methodology with multiple sensor-specific data processing pipelines that send 
information asynchronously to the decision-maker, which bases its current conclusions 
on all the data received thus far from various data streams.  We have applied this 
approach to the task of fusing audio and video data streams, classifying entities in the 
environment and detecting the activities of multiple individuals, using neural networks 
and fuzzy rules for classification decisions.  Situation-specific domain knowledge such as 
information regarding the positions of certain scene landmarks such as position of cars 
etc, helps to provide a richer understanding of the scene context and ability to spot 
specific events. 
 
2.4.8 Distributed Particle Filters:  
 
Noisy sensor measurements result in detection failures and false alarms when tracking 
numerous indistinguishable targets appearing at random in space and time. We have 
developed distributed particle filter techniques to address these problems, improving the 
accuracy of non-linear/non-Gaussian tracking problems in a multi-sensor environment, 
where the (Extended) Kalman Filter approach often fails.  To save the communication 
bandwidth, we introduce a modified Expectation Maximization algorithm to compress 
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the local tracking information before sending it to the fusion center. A corresponding 
fusion approach is also introduced to fuse the information collected from each sensor and 
generate the sub-optimal estimation about the moving targets. We have also addressed 
the maximization of network lifetime for target tracking by intelligently activating the 
most appropriate sensors and deactivating others to save energy.  
 
2.4.9 Vehicle Movement Uncertainty Visualization:   
 
In collaboration with MURI team-members from Univ. of California at Santa Cruz, we 
have developed techniques for the visualization of uncertainty associated with the 
locations of objects such as vehicles moving on road segments.  An important aspect of 
this work is that the associated uncertainty changes with space and time, generally 
depending on the reliability of the sensed information and the timestamps of 
observations. 
 
2.4.10 Personnel movement:  
 
An important scenario for the application of various uncertainty reasoning and 
visualization algorithms is the task of planning personnel movements in the battlefield, 
with uncertain information arriving over time from multiple spatially distributed sensors 
or observers.  We have addressed this task, developing algorithms for fast computation of 
near-optimal paths, updated rapidly when new information arrives after personnel 
movement has been initiated. We have developed a new hierarchical path planning 
algorithm (HIPLA) for fast computation of near optimal paths for such applications, 
which incorporates the dynamic aspect as an integral part of the path planning model. 
When the risk estimates associated with nodes change with time after personnel have 
started traversing a path, HIPLA computes a new sub-path from their current location to 
destination nodes, reusing the previously computed risk estimates for the unaffected 
portions of the graph, saving significant computational time as opposed to re-computation 
of the whole path in the original graph.  Simulations, carried out with graphs containing 
upto 19,600 nodes, showed that HIPLA outperforms two state-of-the-art algorithms viz., 
Shortest path algorithm (SPAH) and Dijkstra’s algorithm with pruning (DP), achieving 
near-optimal solutions with substantially less computational effort.  For personnel 
movement scenarios where multiple objectives need to be optimized (e.g., cost, time, risk 
to personnel, and utility associated with reaching destination), we have developed a new 
multi-objective evolutionary algorithm (EMOCA) and shown that it outperforms state-of-
the-art algorithms such as NSGA-II.  We have collaborated with MURI team-members 
(from Georgia Tech./Univ. of N. Carolina) to apply these algorithms to experiments 
involving the actual movements of individuals (being tracked) in a University Campus. 
 
2.5 Results on Uncertainty Visualization 
 
Our vision is that all information and decisions should include a measure of confidence. 
This measure of confidence, or uncertainty, may be encoded directly with the 
visualization, or it may be provided to the user in another form.  In summary, we have 
addressed the issue of credibility in visualizations and decision-making processes 
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emerging from a mobile augmented battlespace visualization system. Our efforts in this 
area include the following contributions.  
 
2.5.1 Computation and Visualization of Uncertainty for Terrains while Preserving 

Topological Features within the GIS context 
 
Here we include a brief summary of our efforts on computing and visualizing uncertainty 
related to the compression of large terrain data sets. We present an algorithm for 
compressing terrain data that preserves topology. We use a decimation algorithm that 
simplifies the given data set using hierarchical clustering. Topology constraints along 
with local error metrics are used to ensure topology preserving compression and compute 
precise error bounds in the compressed data. Earth's mover distance is used as a global 
metric to compute the degradation in topology as the compression proceeds. Results 
indicate that one can obtain significant compression with low uncertainty without losing 
topology information. During the first year of effort, we focused on preserving point 
features such as high points, low points, or transition points. During the second year of 
effort, we have extended the results to line features such as isocontours or polyline data 
that may be relevant in a battlespace scenario. Since global uncertainty computation for 
preserving line features is very expensive, we have designed an approximate local 
computation algorithm that works well in practice. 
 
2.5.2 Uncertainty-Driven Target Tracking 
 
We have created visualization of uncertain information associated with target tracking. 
As a first step, we modeled the uncertainty associated with the location and velocity of 
targets as probability distributions. We have visualized the uncertain location of the target 
as a blob, which can be tracked over time. We discuss the algorithmic complexity of the 
algorithm for uncertainty computation, and ways to improve its performance. Three 
visualization techniques (galaxy, transparency, and pseudo-color) are developed to 
represent the resulting probability distribution associated with the particle at a later time. 
An appropriate time-dependent sampling approach is adopted to make the visualizations 
more comprehensible to the human viewer. Experiments with different distributions 
indicate that the resulting visualizations often take the form of recognizable real-world 
shapes, assisting the user in understanding the nature of a particle's movement. This work 
was done in collaboration with the Syracuse University. 
 
We investigated an on-line expert algorithm to compute uncertainty of mobile GPS-
equipped objects. The algorithm uses the intelligence gathered by experts to decipher a 
pattern and predict the movements of objects. Depending upon the movement, experts 
given to the weights are updated in real-time to track the objects. 
 
2.5.3 Embedding Uncertainty within VGIS 
 
This effort required collection, rectification, and registration of various GIS data sets 
related to Santa Cruz region. We now have many different types of GIS data sets 
including ½ foot resolution imagery data, elevation data, detailed AUTOCAD drawings, 
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street maps, and LIDAR data for parts of this region. We have also successfully inserted 
the imagery and elevation data within the VGIS (Virtual Geographic Information 
System) developed at the Georgia Institute of Technology. We have been able to 
visualize uncertainty of mobile objects within the VGIS system. This work is in 
collaboration with the Georgia Institute of Technology. 
 
2.5.4. Heterogeneous Uncertainty within a GIS Environment 
 
We have investigated and visualized spatio-temporal GPS uncertainty and uncertainty 
arising due to heterogeneous geo-spatial data. Importance of accurate registration of GPS  
(Global Positioning System) tracked objects embedded within a GIS (Geographic 
Information Systems) context has emerged as a critical need in several land, marine, and 
air navigational systems both for civilian and defense applications. The objective of this 
work is to measure, model and geo-spatially register the positional accuracy of objects 
carrying GPS receivers against a GIS background. Although positional accuracy is 
affected by a number of factors, in this work we have focused on  GPS modes 
(standalone or differential), type of environment (urban or foliage), and type of expected 
movement of objects. The Ashtech Z-12 sensor is used to collect the data. Linear models 
are used to estimate the errors associated with the horizontal position information. This 
error is then visualized upon a 1/2 foot resolution aerial imagery of the UCSC (University 
of California, Santa Cruz) campus. Estimates of speed and direction errors are used to 
create visualizations of spatio-temporal uncertainty associated with an object walking 
through the campus. 
 
GIS data sets acquired using different sensors at different times such as Aerial Lidar data, 
ground Lidar data, aerial imagery, ground level imagery, Autocad drawings do not 
register accurately with respect to each other. Sources of error are numerous including 
sensor noise, geo-spatial registration inaccuracies, shifting of ground over time due to 
earthquakes, and changing lighting conditions. We compute and display uncertainty in 
GIS data with a view to create a common consistent view for decision making. 
 
2.5.5 Uncertainty in Cross-Registration of Data acquired at Different Resolutions 
 
Adaptive fusion of new information in a 3D urban scene is an important goal in 
battlespace visualization. In this work we acquire new image pairs of a scene from closer 
distances and extract 3D models of successively higher resolutions. We present a new 
hierarchical approach to register these texture-mapped 3D models with a coarse 3D 
texture mapped model of an urban scene. First, we use the standard reconstruction 
algorithm to construct 3D models after establishing 1-1 correspondence between the 
feature points of two images at same resolution. Next, a subset of these feature points is 
used to register the higher resolution image with the lower resolution image using a scale-
sensitive algorithm. Finally we register and consistently merge the 3D models at different 
resolutions. We have applied this algorithm successfully for adaptive enhancement of 
scenes by registering data that differ in scale by a ratio of 1:15. Results indicate that the 
proposed hierarchical registration technique effectively utilizes the intermediate models 
to enable the smooth registration of the high resolution models on the coarser models. 
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2.5.6 Multi-modal Exploration of Uncertainty in Geo-Spatial Environment 
 
We have investigated use of multimodal means to convey uncertainty in an already 
cluttered and overloaded visualization using expert systems, sound and speech using 
anticipatory multimodal interfaces. The mobile user is able to view the geo-spatial 
database interactively and is able to communicate using limited speech vocabulary and 
receive spoken feedback. Mobile users are able to communicate with each other using 
wireless. We have also developed anticipatory capabilities to design agents that can learn 
user profiles to provide proactive feedback to the user. 
 
2.5.7 A Generic Structure-from-Motion Algorithm for Cross-Camera Scenarios 
 
In this work, we first introduce a generic structure-from-motion approach based on a 
highly generic imaging model, where cameras are modeled as possibly unconstrained sets 
of sets of projection rays. This approach unifies most existing camera types including 
pinhole cameras, sensors with radial or more general distortions, and catadioptric 
cameras (central or non-central). We are able to reconstruct 3D scenes from calibrated 
images possibly taken by cameras of different types. The question is how accurate is this 
reconstruction? 
 
We have proposed two approaches for increasing the accuracy of reconstruction 
obtaining optimal solutions using bundle adjustment. In these approaches, camera 
motion, calibration and 3D point coordinates are refined simultaneously. The first 
straightforward approach minimizes distances between 3D points and projection rays. 
The other more promising approach minimizes re-projection error.  However, the general 
imaging model does not provide analytical expressions for the re-projection error and its 
derivatives, which are desirable for efficient optimization. Therefore, we proposed to 
approximate the set of projection rays of a general non-central camera by several clusters 
of central rays, allowing us to formulate an analytical cost function. 
 
We presented results for two cross-camera scenarios -- a pinhole used together with an 
omnidirectional camera and a stereo system used with an omnidirectional camera. Using 
ground-truth and 3D reconstruction results from classical techniques, we show that our 
generic algorithm is simple, general and accurate for extensions to various cross-camera 
and multi-camera scenarios. 
 
2.5.8 Ground Classification using Expectation-Maximization 
 
In this work, we classify 3D aerial LiDAR height data into roads, grass, buildings, and 
trees using a supervised expectation-maximization (EM) algorithm. We have computed 
and visualized the uncertainty in classification using confusion matrices. 
 
We present an overview of our approach. Since the terrain is highly undulating, we 
subtract the terrain elevations using digital elevation models  (DEMs, easily available  
from the United States Geological Survey (USGS)) to obtain the height of objects from a 
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flat level. In addition to this height information, we use height texture (variation in 
height), intensity (amplitude of lidar response), and multiple (two) returns from lidar to 
classify the data. Furthermore, we have used luminance (measured in the visible 
spectrum) from aerial imagery as the fifth feature for classification. We have used 
mixture of Gaussian models for modeling the training data. Model parameters and the 
posterior probabilities are estimated using Expectation-Maximization (EM) algorithm.  
 
We experimented with different number of components per model and found that four 
components per model yield satisfactory results. We have tested the results using leave-
one-out as well as random $\frac{n}{2}$ test. Classification results are in the range of 
66% -- 84% depending upon the combination of features used that compares very 
favorably with train-all-test-all results of 85\%. Further improvement is achieved using 
spatial coherence. 
 
2.5.9 Ground Classification using Support Vector Machines (SVM) 
 
We classify 3D aerial lidar scattered height data into buildings, trees, roads, and grass 
using the Support Vector Machine (SVM) algorithm. We have used five features -- height 
data, height variation, normal variation, lidar intensity returns, and image intensity -- to 
classify the data into four classes.  We also use only height-derived features -- height, 
height variation, and normal variation -- to classify the data into three categories -- 
buildings, trees (high vegetation), and road-grass. We have implemented and 
experimented with several variations of the SVM algorithm with soft-margin 
classification to allow for the noise in the data. We have applied our results to classify 
aerial lidar data collected over approximately 8 square miles. We visualize the 
classification results along with the associated confidence using a variation of the SVM 
algorithm producing probabilistic classifications. We observe that the results are stable 
and robust. We compare the results against the ground truth and obtain higher than 90% 
accuracy and convincing visual results. 
 
2.5.10 Ground Classification using AdaBoost 
 
We use the AdaBoost algorithm to classify 3D aerial lidar scattered height data into four 
categories: road, grass, buildings, and trees. To do so we use five features: height, height 
variation, normal variation, lidar return intensity, and image intensity. We also use only 
lidar-derived features to organize the data into three classes (the road and grass classes 
are merged). We apply and test our results using ten regions taken from lidar data 
collected over an area of approximately eight square miles, obtaining higher than 92\% 
accuracy. We also apply our classifier to our entire dataset, and present visual 
classification results both with and without uncertainty. We implement and experiment 
with several variations within the AdaBoost family of algorithms. We observe that our 
results are robust and stable over all the various tests and algorithmic variations. We also 
investigate features and values that are most critical in distinguishing between the classes. 
This insight is important in extending the results from one geographic region to another. 
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Appendix I: Honors, Awards and Press Releases 
 

• Best paper award: U. Neumann, S. You, J. Hu, B. Jiang, and J. W. Lee, 
“Augmented Virtual Environments (AVE): Dynamic Fusion of Imagery and 3D 
Models,” IEEE Virtual Reality 2003, pp. 61-67, Los Angeles California, March 
2003.  

• Best paper award: R. Niu, P. Varshney, M.H. Moore, and D. Klamer, “Decision 
Fusion in a Wireless Sensor Network with a Large Number of Sensors”, Seventh 
International Conference on Information Fusion, Stockholm, Sweden, June 2004. 

• P. Varshney: IEEE Distinguished Lecturer for AES Society. Have lectured at 
Rochester, Long Island, Syracuse, Waterloo and Atlanta Sections.  

• P. Varshney: Plenary lectures at National Systems Conf. in India and Passive 
Covert Radar Conf., 2005. 

• A. Zakhor: Plenary talk at the registration workshop at CVPR 2005 
• W. Ribarsky: Bank of America Endowed chair at UNC Charlotte 
• June 2005, R&D magazine on the Berkeley 3D modeling system: 

http://www.rdmag.com/ShowPR.aspx?PUBCODE=014&ACCT=1400000100&I
SSUE=0506&RELTYPE=PR&ORIGRELTYPE=CVS&PRODCODE=00000000
&PRODLETT=H 

• May 2005 New Scientist on the Berkeley 3D modeling system: 
http://www.newscientist.com/article.ns?id=mg18624985.800&feedId=online-
news_rss20  

• American Public Radio Interview, Future Tense, May 2005 on the Berkeley 3D 
modeling system: http://tinyurl.com/dctc6  
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Appendix II: Technology Transitions 
 

• New Darpa program UrbanScape was initiated based on this Muri: 
o http://dtsn.darpa.mil/ixo/programs.asp?id=86 
o Program managers: 

 Dr. Tom Stratt 
 Dr. Brian Leininger 

• Start up founded by post-doc supported by this Muri: 
o Dr. Christian Frueh 
o Urban-Scan: http://www.urban-scan.com 
o Urban-Scan subcontractor to Darpa UrbanScape through SAIC formerly 

GSTI-3D 
• 3D city modeling project software has been submitted to Office of Technology 

and Licensing at Berkeley for licensing 
o Urban-Scan licensed software from UCB OTL 
o Google and Computa Labs in negotiations to license 

• Two day tutorial at Berkeley to ARL personnel on operational and algorithmic 
aspects of 3D city modeling software 

o Provided complete video/audio/text documentation of city modeling 
project 

• Carried out a 2 day 3D modeling of Potomac Yard Mall in Washington, DC in 
December 2003 for Jeff Turner of then GSTI-3D, now SAIC 

• Carried out 2 day modeling of Ft. McKenna in Geogia in December 2003 in 
collaboration with Jeff Dehart of the ARL 

o Delivered the 3D model to Larry Tokarcik’s group at ARL 
• Metrolaser Inc 

o Provided 3D models for developing 3D holographic displays 
o DARPA SBIR on 3D display visualization under Tom Stratt and Brian 

Leininger  
• Google Earth provided further funding to continue 3D modeling effort resulting 

from this MURI and is in the process of licensing Berkeley’s 3D city modeling 
software 

• Darpa/SRI VisBuilding project under the leadership of Dr. Ed Paranowski will 
utilize and extend results from this MURI. 

• Sentinel AVE LLC  
o Startup with PIs from USC 
o AVE and Modeling software systems  

 Licensed from USC 
o In development with 

 Northrop Grumman – perimeter security 
 Chevron – asset security and operations 
 Raytheon - surveillance and security 
 Olympus – research lab support 

• ARMY TEC  
o Lidar modeling system 
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• ANDRO Computational Solutions received several SBIR projects in the areas of 
image registration and sensor fusion for missile tracking and recognition from 
AFRL and Missile Defense Agency, POC Mr. A. Drozd 

• Two STTR projects awarded related to MURI  
o AFOSR with JHM technolgies 
o ONR with BAE systems/Alpha Tech 

• Sensis Corp. is incorporating the temporal Bayesian network model developed 
under this MURI in their situational awareness engine, POC Mr. A. Biss. 

• Consultation and evaluation with Chubb (UTRC) on sensor fusion for security 
applications 

• Technology transfer to Syracuse Center of Excellence on Environment and 
Energy Systems, sponsored by the state of NY on design of its fully instrumented 
headquarters building. 

• Coop Research Agreement with Army Research Laboratory in the area of 
personnel detection based on the work on heterogeneous sensor fusion, POC Dr 
T. Damarla 

• Air Force Office of Scientific Research Grant in the area of information fusion 
and information exploitation, POC Dr A. Magnus 

• Office of Naval Research/Oak Ridge National Laboratory Coop Research 
Agreement in the area of multi-domain networks for detection of nuclear radiation 
and for perimeter surveillance, POC Dr. N. Rao 

• Presented  mobile situational visualization and its relation to homeland security: 
o Special session of the AAAS meeting on the National Visualization and 

Analytics Center, February, 2005, at AppliedVis 2005, May, 2005 
o DHS Regional Visualization and Analytics Centers, January, 2006 

• Spun off a new ARO funded project on eye point dependent models applied to 
terrain analysis: 

o Based on urban terrain analysis in this MURI. 
• Established the Southeastern Regional Visualization and Analytics Center, funded 

by DHS: 
o critical infrastructure simulations for disaster relief planning and 

emergency response.  
o Will use  terrain visualization and modeling capabilities developed in 

MURI. 
• Bank of America anti-money-laundering project 

o Bank activity visualization on geo-political structure 
• Sarnoff: Collaboration on uncertainty visualization and probabilistic moving 

targets 
• NASA AMES: Collaboration on multimodal situational visualization and 

software development 
• Raytheon: Transition software on low uncertainty compression/registration 

algorithms for terrain. 
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Appendix III: Personnel 
 
Principal Investigators 
Avideh Zakhor, (UC Berkeley) 
Bill Ribarsky, (UNC Charlotte) 
Ulrich Neumann (USC) 
Pramod Varshney (Syracuse) 
Suresh Lodha (UC Santa Cruz) 
 

Postdoctoral Researchers and 
Research Scientists 
Dr. Christian Frueh, Postdoc 
Dr. Hassan Foroosh, Research Scientist 
Dr. Suya You, Postdoc 
Dr. Ruixin Niu, Postdoc 
Russell Sammon, Staff engineer 

 
Graduate Students 
Christian Frueh, PhD  
John Flynn, M.S. 
Siddarth Jain, MS 
Ali Lakhia, M.S.  
John Secord, M.S. 
Min Ding, M.S. 
Remco Chang 
Tom Butkiewicz 
Caroline Ziemkiewicz 
Xin Zhang 
Justin Jang 
Tazama St. Julien 
David Krum 
Lu Wang, PhD 
Jinhui Hu, PhD 
Ismail Oner Sebe, PhD 
Bolan Jiang, PhD 
Jun Park, PhD 
Tat Leung Chung, MS 
Ramesh Rajagopalan, MS, PhD 
Deepak Devicharan, MS 
Qi Cheng, MS 
Long Zuo, PhD 
Ersin Elbasi, MS 
Jie Yang, MS 
A. Hasbun, MS 
Darren Fitzpatrick, MS 
Vidhya Jayakrishnan, MS 
Sanjit Jhala, MS 
Edward Kreps, MS 
Srikumar Ramalingam, PhD 
Jose Renteria, PhD 

Hemanth Singamsetty, MS 
Lilly Spirkovska, PhD 
Shailaja Vats, MS 
Yongqin Xiao, MS 
Amin P. Charaniya 
Karthik-Kumar Arun-Kumar, MS 
Alex D’Angelo, MS 
Oliver Wang 
Yongqin Xiao, MS 
Michael Shafae 
Grant Wong 
Christopher Campbell 
James Davis 
David Helmbold 
Arthur Keller 
Roberto Manduchi 
Dominic Massaro 
Peter Sturm (INRIA) 
Wang-Chiew Tan 
Olugbenga Omoteso  
Jaeil Choi 
Weidong Shi 
Guoquan (Richard) Zhou 
Eunjung Kang 
Brendan Hannigan 
Mitchell Parry 
Matthew Grimes 
Ernst Houtgast 
Onno Pfeiffer 
Joseph Scoccinaro 
Jonathan Gdalevich 
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Undergraduate Students 
Steve Jian, BS 
John Lo, BS 
Darren Fitzpatrick, BS 
Krishna Roskin, BS 
Andrew Ames, BS 
Adam Bickett, BS 
Jason Bane, BS 
Nikolai M. Faaland, BS 
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Appendix IV: Publications 
 
BOOKS (Total: 2) 
1. G.L. Foresti, C.S. Regazzoni and P.K. Varshney (Eds.), Multisensor Surveillance 

System: The Fusion Perspective , Kluwer Academic Press, 2003.  
2. “Illuminating the Path”, Research Agenda for visualization and analytics program, 

2005, Thomas and Cook. 
 
BOOK CHAPTERS (Total: 4) 
1. Peter Sturm, Srikumar Ramalingam, and Suresh K. Lodha, "On Calibration, Structure 

from Motion and Multi-View Geometry for Generic Camera Models", in Imaging 
Beyond the Pin-hole Model, K. Daniilidis, R. Klette, and A. Leonardis (editors), 
Kluwer Academic Publishers, 2005. 

2. William Ribarsky. Virtual Geographic Information Systems. The Visualization 
Handbook, Charles Hanson and Christopher Johnson, editors (Academic Press, New 
York, 2003). 

3. Development of Tools for Construction of Urban Databases and Their Efficient 
Visualization,” Nickolas Faust and William Ribarsky, Modeling and Visualizing the 
Digital Earth, Mahdi Abdelguerfi, Editor (Kluwer, Amsterdam, 2001). 

4. William Ribarsky, Nickolas Faust, Zachary Wartell, Christopher Shaw, and Justin 
Jang, “Visual Query of Time-Dependent 3D Weather in a Global Geospatial 
Environment,” Mining Spatio-Temporal Information Systems, R. Ladner, K. Shaw, 
and Mahdi Abdelguerfi, Editors (Kluwer, Amsterdam, 2002).  

 
PEER-REVIEWED JOURNALS (Total: 35) 
1. Secord and A. Zakhor, Tree Detection in Urban Regions Using Aerial LiDAR and 

Image Data, IEEE Geoscience and Remote Sensing Letters (GRSL), Vol. 4, No. 2, 
pp. 196-200, April 2007.  

2. C. Frueh, S. Jain, and A. Zakhor, "Data Processing Algorithms for Generating 
Textured 3D Building Facade Meshes from Laser Scans and Camera Images“, 
International Journal of Computer Vision, 61 (2), pp. 159-184, February 2005. 

3. Frueh and A. Zakhor, "An Automated Method for Large-Scale, Ground-Based City 
Model Acquisition“, International Journal of Computer Vision, 60 (1), pp. 5-24, 
October 2004 

4. Frueh and A. Zakhor, "Constructing 3D City Models by Merging Ground-Based and 
Airborne Views", IEEE Computer Graphics and Applications, Special Issue Nov/Dec 
2003.   

5. Justin Jang, Peter Wonka, William Ribarsky, and C.D. Shaw. “Punctuated 
Simplification of Man-Made Objects,” The Visual Computer, Vol 22(2), pp 136-145 
(2006). 

6. William Ribarsky, co-editor, Special Issue on Haptics, Telepresence, and Virtual 
Reality,  IEEE Transactions on Visualization and Computer Graphics (November, 
2005). 

7. William Ribarsky, co-editor. Special Issue on Haptics, Virtual and Augmented 
Reality, IEEE Transactions on Visualization and Computer Graphics (November, 
2005). 
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8. William Ribarsky, chapter editor, “The Science of Analytic Reasoning”. Illuminating 
the Path: Research and Development Agenda for Visual Analytics, James Thomas 
and Kristin Cook, editors. IEEE Computer Society Press (May, 2005). 

9. Remco Chang, Thomas Butkiewicz, Caroline Ziemkiewicz, Zachary Wartell, Nancy 
Pollard, and William Ribarsky. Hierarchical Simplification of City Models to 
Maintain Urban Legibility. Submitted to IEEE Transactions on Visualization and 
Computer Graphics. 

10. William Ribarsky. Virtual Geographic Information Systems. The Visualization 
Handbook, pp. 435-463 (Academic Press, New York, 2004). 

11. William Ribarsky, editor (with Holly Rushmeier). 3D Reconstruction and 
Visualization of Large Scale Environments. Special Issue of IEEE Computer 
Graphics & Applications (December, 2003). 

12. Zachary Wartell, Larry Hodges, and William Ribarsky, “A Geometric Comparison of 
Algorithms for Fusion Control in Stereoscopic HTDs,” Report GIT-GVU-00-09, pp. 
129-143, IEEE Transactions on Visualization and Computer Graphics (2002).  

13. Tony Wasilewski, William Ribarsky, and Nickolas Faust. From Urban Terrain 
Models to Visible Cities. Vol. 22(4), pp. 10-15, IEEE CG&A (2002). 

14. Eduard Groeller, William Ribarsky, and Helwig Loeffelmannm, Editors, Computers 
& Graphics, Special Issue on Data Visualization (Vol. 24, no. 3, June, 2000).  

15. Bastian Leibe, Thad Starner, Zachary Wartell, William Ribarsky, Larry Hodges, 
Justin Weeks, Brad Singletary, and David Krum, “Towards Spontaneous Interaction 
with the Perceptive Workbench, A Semi-Immersive Virtual Environment,” IEEE 
Computer Graphics & Applications, pp. 54-65, (2000).  

16. Q. Zhang and P. K. Varshney, "Decentralized M-ary Detection via Hierarchical 
Binary Decision Fusion", Information Fusion, vol 2, pp 3-16, March 2001.  

17. Q. Zhang, P.K. Varshney and R.D.Wesel, "Optimal Bi-level Quantization of i.i.d. 
Sensor Observations for Binary Hypothesis Testing", IEEE Trans. on Information 
Theory, vol 48, pp 2105-2111, July 2002.  

18. Nojeong Heo and Pramod K. Varshney, "Energy-Efficient Deployment of Intelligent 
Mobile Sensor Networks," IEEE Trans. on Systems, Man, and Cybernetics, PART A, 
vol. 35, no. 1, pp.78-92, January 2005. 

19. H. Chen, S. Lee, R. M. Rao, M. A. Slamani and P. K. Varshney, "Imaging for 
Concealed Weapon Detection," IEEE Signal Processing Magazine, vol.22, no. 2, 
pp.52-61, March 2005 

20. R. Niu, P. Varshney, K. Mehrotra and C. Mohan, “Temporally Staggered Sensors in 
Multi-Sensor Target Tracking Systems,” IEEE Transactions on Aerospace and 
Electronic Systems, pp 794-808, July 2005 

21. Qi Cheng, Pramod K. Varshney, Kishan G. Mehrotra and Chilukuri K. Mohan, 
“Bandwidth Management in Distributed Sequential Detection,” IEEE Trans. Inform. 
Theory, Vol. 51, No. 8, pp. 2954-2961, Aug. 2005 

22. R. Niu and P. Varshney, “Distributed Detection and Fusion in a Large Wireless 
Sensor Network of Random Size,” EURASIP Journal on Wireless Communications 
and Networking, pp 462-472, September 2005. 

23. E. Elbasi, L. Zuo, K.G.Mehrotra, C. Mohan and P.K. Varshney, “Control Charts 
Approach for Scenario Recognition in Video Sequences”, Turkish Journal of 
Electrical Engineering & Computer Sciences, Volume 13, Issue 3, pp. 303-310, 2005. 
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24. Ramesh Rajagopalan, Kishan Mehrotra, Chilukuri K Mohan, and Pramod K  
Varshney, “Hierarchical Dynamic Personnel Movement Planning for Risk 
Minimization in Hazardous Environments”, IEEE Transactions on Aerospace and 
Electronic Systems, to appear. 

25. R. Niu and P. Varshney, “Target Location Estimation in Sensor Networks  with 
Quantized Data,” IEEE Transactions on Signal Processing, pp 4519-4528, December 
2006. 

26. Chilukuri K. Mohan, Kishan G. Mehrotra, Pramod K. Varshney and Jie Yang, 
“Temporal Uncertainty Reasoning Networks for Evidence Fusion with Applications 
to Object Detection and Tracking,” International Journal of Information Fusion, (to 
appear) 

27. R. Niu, B. Chen, P. Varshney, “Fusion of Decisions Transmitted over Rayleigh 
Fading Channels in Wireless Sensor Networks'', IEEE Transactions on Signal 
Processing, pp 1018-1027, March 2006. 

28. R. Niu, P. Varshney, and Q. Cheng, "Distributed Detection in a Wireless Sensor 
Network with a Large Number of Sensors'', International Journal on Information 
Fusion, Vol. 7, No. 4, pp 380-394, December 2006. 

29. Lilly Spirkovska and Suresh K. Lodha, ``Context-aware intelligent assistant approach 
for decreasing pilot workload", Journal of Aerospace Computing, Information, and 
Communication, September 2005, Vol. 2. No. 9, pages 386--400. 

30. Suresh K. Lodha, Nikolai M. Faaland, and Jose Renteria, “Hierarchical Toplogy 
Preserving Compression of 3D Vector Fields using Bintree and Triangular 
Quadtrees”, IEEE Transactions on Visualization and Computer Graphics, Vol. 9, No. 
4, October 2003, pages 433—442 

31. Suresh K. Lodha, Krishna M. Roskin, and Jose C. Renteria, ``Hierarchical Topology 
Preserving Compression of Terrains", Visual Computer, September 2003. 

32. Lilly Spirkovska and Suresh K. Lodha,``AWE: Aviation Weather Data Visualization 
Environment'',  Computers and Graphics, Volume 26, No.~1, February 2002, 
pp.~169--191. NASA/TM-2000-209617, December 2000. 

33. J. Hu, S. You, and U. Neumann,   "Texture Painting from Video,” the Journal of 
WSCG, Jan 2005.  

34. U. Neumann, S. You, J. Hu, B. Jiang, and I. O. Sebe, "Visualizing Reality in an 
Augmented Virtual Environment,” Presence:Teleoperators and Virtual Environments 
Journal, Vol 13, No. 2, MIT press, pp. 222-233, April 2004.   

35. J. Hu, S. You, U. Neumann, "Approaches to Large-Scale Urban Modeling, “IEEE 
Computer Graphics and Applications, Vol. 23, No. 6, pp. 62-69, November 2003.  

 
CONFERENCE (Total: 111) 
1. V. Markov, S. A. Kupiec, and A. Zakhor, "Autostereoscopic Displays for 

Visualization of Urban Environments", Proceedings of SPIE Vol. 6392 (Boston 2006) 
Three-Dimensional TV, Video, and Display V.  

2. J. Secord and A. Zakhor, "Tree Detection In Aerial LiDAR and Image Data", 
International Conference on Image Processing, Atlanta, Georgia, September 2006.  

3. Lakhia, "Efficient Interactive Rendering of Detailed Models with Hierarchical Levels 
of Detail" in 2nd International Symposium on 3D Data Processing, Visualization, and 
Transmission, Thessaloniki, Greece, September 2004, pp 275-282.  
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4. Frueh, R. Sammon, and A. Zakhor, "Automated Texture Mapping of 3D City Models 
With Oblique Aerial Imagery", in 2nd International Symposium on 3D Data 
Processing, Visualization, and Transmission (3DPVT), Thessaloniki, Greece 2004.  

5. C. Frueh and A. Zakhor, "Constructing 3D City Models by Merging Ground-Based 
and Airborne Views", in IEEE Conference on Computer Vision and Pattern 
Recognition 2003, Madison, USA, June 2003, p. II-562 - 69.  

6. C. Früh and A. Zakhor, "Automated Reconstruction of Building Façades for Virtual 
Walk-thrus", SIGGRAPH 2003, Sketches and Applications, San Diego, 2003 

7. C. Früh and A. Zakhor, “Reconstructing 3D City Models by Merging Ground-Based 
and Airborne Views”, Proc. of 8th International Workshop on Visual Content 
Processing and Representation, Madrid, 2003, p. 306-313 

8. C. Frueh and A. Zakhor, "Data Processing Algorithms for Generating Textured 3D 
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Processing, Visualization and Transmission 2002, Padua, Italy, June 2002, p. 834 - 
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9. C. Frueh and A. Zakhor, "3D Model Generation for Cities Using Aerial Photographs 
and Ground Level Laser Scans", in IEEE Conference on Computer Vision and 
Pattern Recognition Conference, Kauai, USA, December 2001, p. II-31-38, vol.2. 2.  

10. C. Früh and A. Zakhor, "Fast 3D Model Generation In Urban Environments", IEEE 
Conference on Multisensor Fusion and Integration for Intelligent Systems 2001, 
Baden-Baden, Germany, August 2001, p. 165-170. 

11. Xin Zhang, Tazama Upendo St Julien, Ramesh Rajagopalan, William Ribarsky, 
Pramod Varshney, Chilukuri Mohan, and Kishan Mehrotra . Dynamic Decision 
Support for Mobile Situational Visualization. AppliedVis 2005. 

12. Tazama St. Julien, Joseph Scoccinaro, Jonathan Gdalevich, and William Ribarsky. 
Sharing of Precise 4D Annotations in Collaborative Mobile Situational Visualization. 
Submitted to IEEE Symposium on Wearable Computing. 

13. Remco Chang, Thomas Butkiewicz, Caroline Ziemkiewicz, Zachary Wartell, Nancy 
Pollard, and William Ribarsky. Using Urban Legibility to Produce Completely 
Navigable Large Scale Urban Models. To be published, ACM SIGGRAPH 2006 Short 
Papers. 

14. Ernst Houtgast, Onno Pfeiffer, Zachary Wartell, William Ribarsky, and Frits Post. 
Navigation and Interaction in a Multi-Scale Stereoscopic Environment. IEEE Virtual 
Reality 2004. 

15. Nickolas Faust and William Ribarsky. Integration of GIS, Remote Sensing, and 
Visualization. Invited paper, Proc. Remote Sensing 2003 (Barcelona, 2003). 
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20. Zachary Wartell, Eunjung Kang, Tony Wasilewski, William Ribarsky, and Nickolas 
Faust. Rendering Vector Data over Global, Multiresolution 3D Terrain. 
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21. Peter Wonka, Michael Wimmer, Francois Sillion, and William Ribarsky. Instant 
Architecture. Siggraph 2003, pp. 669-678 (2003). 

22. David Krum, Rob Melby, William Ribarsky, and Larry Hodges. Isometric Pointer 
Interfaces for Wearable 3D Visualization. ACM CHI 2003. 

23. William Ribarsky, Justin Jang, Chris Shaw, and Nickolas Faust. View-Dependent 
Multiresolution Splatting of Non-Uniform Data. pp. 125-132, Eurographics-IEEE 
Visualization Symposium 2002.  

24. William Ribarsky, “Multiresolution Visualization of Urban Environments,” 
Intersection of Geospatial Information and Information Technology (National 
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25. William Ribarsky, “Towards the Visual Earth,” Workshop on Intersection of 
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26. William Ribarsky, Christopher Shaw, Zachary Wartell, and Nickolas Faust, “Building 
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28. David Krum, Olugbenga Omoteso, William Ribarsky, Thad Starner, and Larry 
Hodges, “Speech and Gesture Multimodal Control of a Whole Earth 3D Virtual 
Environment,” Eurographics-IEEE Visualization Symposium 2002. Winner of SAIC 
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29. William Ribarsky, T.Y. Jiang, Tony Wasilewski, Nickolas Faust, Brendan Hannigan, 
and Mitchell Parry, “Acquisition and Display of Real-Time Atmospheric Data on 
Terrain,” Proceedings of the Eurographics-IEEE Visualization Symposium 2001, pp. 
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